
Terminal Emulation for Automation and Testing
of Character -Graphic Programs:

A Code Walkthrough

Don Libes
National Institute of Standards and Technology
Manufacturing Systems Integration Division

Gaithersburg, MD

Abstract

This paper describes a technique that allows automation and testing of character -
graphic programs using existing public-domain tools. Specifically, Tcl, Tk, and
Expect are augmented with a terminal emulator in order to build a screen.represen -
tation inmemory. This screen can be queried in ahigh-level way and the interaction
can be further controlled based on the screen representation.

One immediate use of this is to build a test suite for automating standards conform -
ance ofallof the interactive programs inPOSIX 1003.2 (Interactive Shells andUtil-
ities). This technique i s portable and inexpensive. Allthe software described in this
paper i s free or in the public domain.

This paper assumes a thorough understanding of Expect, Tcl, and Tk.
Keywords: Conformance Testing; Expect; Interaction Automation; POSIX 1003.2;
Regression Testing; Tcl; Tk;X Window System

Introduction

Most character -graphic programs are interactive and provide no means for non-interactive con-
trol. This i s not surprising. Character -graphics are of use primarily to humans, and humans have
limited short-term memory. For example, humans want to see context when typing a report. Even
if every line has been manually entered, i t i s desirable to have the lines displayed to make up for
limited human short-term memory.

Reprinted from the Proceedings of the 21st Annual Trenton
Computer Festival (TCF ‘96), Trenton, NJ, April 21-22, 1996.

1

In contrast, a computer has no need to see context. The computer effectively has infinite memory
and has no trouble remembering what i t has just done. For example, if the computer i s entering an
address into a template, the computer does not need to constantly refer back to see what it has
already entered. Similarly, the computer does not need to check ifit entered the information cor-
rect1y.

This distinction between computer -interaction and human-interaction impacts programs. Many
programs cannot be automated by computers or automatically switch to non-graphical modes
when driven this way. This makes regression testing of character -graphic programs difficult.
Because it i s so difficult, i t i s rarely performed. If performed at all,it i s usually very limited and
requires special coding with significant expense.

This paper describes a general technique that allows automation and testing of character -graphic
programs using portable and inexpensive tools. Specifically, Tcl, Tk, and Expect are augmented
with a terminal emulator in order to build a screen representation in memory. This screen can be
queried in a high-level way and the interaction can be further controlled based on the screen rep-
resentation.

One immediate use of th is i s to build a test suite for automating standards conformance of all of
the interactive programs in POSIX 1003.2 (Interactive Shells and Tools) [POSIX94].

Background

Tcl i s an embeddable language library which can be linked to other applications. Tcl provides a
fairly generic but reasonably high-level language. The language i s interpreted and resembles the
UNIX shell in many ways. Elements are also derived from C and LISP. Despite its mixed hen-
tage, much of the excess baggage from these other languages has been omitted leaving a modest
but capable language. The language consists of a core of features called Tcl (Tool Command Lan-
guage).

Tcl i s extensible. Two popular Tcl extensions are Tk and Expect. Tk enables control of graphic
user interfaces. Expect enables control of interactive character -oriented interfaces. Both Tk and
Expect can work together. For example, they can be used to layer a graphic user interface on top
of an existing character -orientedprogram.

Tcl and Tk are described by [Ouste193]. Expect is described by &ibes90,91,95]. The remainder
of the paper assumes a reasonable understanding of Expect, Tcl, and Tk.

Traditional Expect Processing inNon-character -graphic Programs

In non-character -graphic applications, characters are written on each line from left to right. After
completing a line, characters are written to the next line. When the last line of the screen i s filled,
the screen is scrolled. The oldest line at the top of the screen i s deleted, all the other lines are
moved up, and new characters are written to the new line at the bottom of the screen.

2

Since characters appear in exactly the order that they are written, it is simple to wait for specific
patterns. As characters arrive, they are appended to a buffer. The buffer can then be searched for
the patterns of interest.

Before+
After +

For example, suppose a program prompts with the string “yem o r no:”. Th i s prompt can be
detected by waiting for exactly that string to appear in the output of the program.

y ’ e s t e r d a y .
n o :y e s o r

Expect i s a popular public-domain program that automates interactive programs. Using Expect,
the actual command to wait for the string “yo. o r no:’* is:

expoct “yo8 or no:”

Expect has a rich set of built-in tools to describe patterns. However, they areall serial in nature.
Expect sees a stream of characters and does not attempt to interpret the characters in a different
order than they were received.

Expect Processing in Character -Graphic Programs

In contrast to non-character -graphic programs, character -graphic programs write characters to
arbitrary character locations on a screen or window. For example, aDECVTlOOterminal can dis-
play a 24 by 80 grid of printable ASCII characters. Characters can only appear in discrete loca-
tions in the grid. However, the grid can be filled in any order and characters at any location may
be replaced any time by other characters.

Special character sequences, usually beginning with an escape character, are used to position sub-
sequent characters in the grid.Iwill refer to these aspositioning sequences.

Because the grid may be filled in any order, it i s not trivial to watch a stream of characters for pat-
terns. Typically, such programs take advantage of characters that already exist on the screen to
reduce the amount of characters that have to be produced to update the display.

For example, suppose a line on the screen contains “yamtorday.”. If th is i s to be replaced with
the “yes or no:*’prompt, the program can rewrite the entire line with “YO8 o r no:**.However,
the program can achieve the same effect by replacing the “to,’ with ‘‘ 0)’ and “day.” with “ no:**.

This i s shown in the following figure.

Characters remaining the same

The output of this program to produce “yo. o r no’* would be:

yesterday. <positioning sequence> ocpositioning sequence> no:

3

The simple Expect command used earlier would not be able to match “yo. or no” in such output.
However, with an understanding of how to interpret the positioning sequences, it is possible to
model the screen and match the string. In that case, the match i s not made against the output
directly. Instead, the match i s made against the model of the screen.

Terminal Emulation

A screen may be modeled using emulation. Indeed, emulation i s the basis for terminal emulators.
Terminal emulators create a model of the screen and display i t on a windowed system such as the
X Window System. However, terminal emulators are not designed to support detection of patterns
on the screen.

En th is section,Ipresent a terminal emulator that provides a framework upon which to perform
screen analysis. The code presented below and on the next few pages defines the terminal emula-
tor. Functionally, the emulator i s capable of supporting sophisticated character -graphic programs
such as vi [Lamb901 and emacs [Stal194]. Hooks are provided so that screen analysis can be done
after each screen update.

For simplicity, the Tk system i s used to implement the grid of characters. Tk i s a system for con-
trolling X11 graphics. Tk i s convenient for maintaining the grid since Tk automatically displays
the grid in a window. In practice, however, it i s not necessary to display the grid. Indeed, nondis-
play of the grid i s useful when automating an existing program. In many cases, user comprehen -
sion of the character -graphic user interface i s no longer necessary so there i s no need to display it.

The grid i s implemented using a Tk text widget. A text widget allows arbitrary placement of text
within the grid. A number of other features are supported such as highlighting. Iwill describe
these later. The code defines a text widget with a fixed-size display of 24 rows by 80 columns. The
nature of the terminal emulator does not actually depend on th i s but some size must exist. Simi -
larly, a shell i s started, through which any programs under test will be invoked. For convenience,
the name of the Tk widget i s stored in the variable “term)’.

tktenn - t o m omlator uaing -act t o control 8 Tk tu& widgot

set rbwa 24
set cols 80

;# nudmr of rowa in torm
;X numbor o f columna in term

s ta r t a shol l and t o x t widgot fo r i t a output
set a t t y - i n i t “-tabs.
eval spawn $env(SaELL)
a t t y rowa $rows columna $cola $apawn -out(alavo,ns)
se t term-apawn-id $6paOm_id

t e x t Storm - w i d t h $cola -height $row8

In theory, the task of understanding screen manipulation sequences i s straightforward. However,
in reality, it is complex. The complexity is due to many reasons thatIwil l touch upon in the
remainder of the paper. Some of the problems are:

4

l Many vendors use non-standard screen manipulation sequences.

l Even with a single screen manipulation definition, there is an infinite number of sequences
that can generate a particular screen image.

l High-level databases and libraries exist to deal with the multi-vendor problem, however
there i s no single standard.

l Some programs do not follow the specifications described by the high-level databased
libraries.

Intuitively, the way to build a terminal emulator i s to figure out what the character sequences
mean and model th i s in computer code. The solution presented in this paper is not far afield from
that idea, but i t gets there in a somewhat circuitous route.

First, it i s necessary to understand that there is no standard terminal type. While there i s an A N S I
standard, it i s so limited thatallvendors extend it. Naturally, these extensions are rarely compati -
ble with one another. Indeed, manufacturers often produce extensions that are different even
within their own model lines.

Several attempts have been made to define high-level databases and software interfaces to under-
stand these hundreds of definitions. However, these interfaces are for producing character
sequences, not consuming them.

Given an arbitrary character sequence, there i s no trivial way to figure out what it does. Presuming
a particular terminal type simplifies the problem but does not necessarily make i t solvable. For
instance, while i t i s possible to invert the database descriptions, some of the sequences are proper
subsets of one another. This makes it impossible to know which of two functions i s being
requested. This also arises when terminals are used beyond their documented limits. Sequences
that were defined with only enough space for 24 rows, for instance, can theoretically match two
different requests if a terminal with more than 24 rows i s emulated. This is a common scenario
with emulated terminals. Which request i s correct can only be determined by the undocumented
operation of the physical terminal itself. Th i s can change from one release to the next and is not
necessarily derivable via software.

To avoid these problems,Ihave taken the approach of an "ideal" terminal of my own design. By
designing a terminal from scratch, Iavoid the difficulties of having to deduce the characteristics
of another existing terminal. There are two drawbacks of an ideal terminal:

l An ideal terminal cannot be automatically displayed on a terminal emulating a different
type.

l A program that only generates output for a specific type will not necessarily display cor-
rectly on an ideal terminal.

Fortunately, both of these are moot. The fist drawback i s irrelevant partly because typically the
emulator itself provides a display.Iwill later describe how to display the ideal terminal. In addi-
tion, the emulator can be augmented to consume characters meant for one terminal type and con-

5

vert th is into characters to drive yet another type. The second drawback is irrelevant because the
programs of interest should not be tied to a particular terminal type but should be terminal inde-
pendent. While i t i s possible to force the emulator to understand a particular terminal type, i t can
be much more difficult because the ideal terminal i s invariably much simpler than any real termi -
nal.

Defining Terminal Definitions

An arbitrary terminal definition would be meaningless if there were no way to inform programs of
it, but the same databases as before serve this purpose. The approach taken by modern databases
i s to support arbitrary terminal types through the use of a terminal description language. Unfortu-
nately, there i s no single standard.

In UNIX environments, there are two “standards” - termcap and terminfo [Good91]. The pres-
ence of one of these can often be explained by the derivation of the system. termcap was invented
at Berkeley and can be found on Berkeley -derived systems. terminfo was a redesign provided by
AT&T and can be found on AT&T (i-e., SV) derived systems. Many systems support both and it i s
not uncommon to find half the utilities on the system using termcap and half using terminfo.
Hence, the solution in this paper necessarily implements both. The script i s forgiving in that i t wil l
run even ifone of the two implementations fai ls due to its absence.

Fortunately, it i s much easier to design a terminal description from scratch than it i s to mimic an
existing terminal description. The ,reason is that few sequences are actually mandatory. For
instance, relative cursor motion can be simulated with absolute cursor motion. Th i s one observa-
tion alone dramatically simplifies descriptions since there are often dozens of relative cursor
motions which can be replaced by a single absolute cursor motion definition. Using a single,
albeit more complex, definition also turns out to be more efficient than many, relative cursor
motion operations asIwill explain later.

The following code establishes descriptions inboth termcap and terminfo style using the ideal ter-
minal type which i s arbitrarily named “tk”. The code succeeds even if termcap and tenninfo are
not supported on the system. Th i s code actually has to be executed before the spawn shown ear-
lier in order for the environment variables to be inherited by the process.

Iwill briefly describe the termcap definition. (The terminfo definition i s very similar soIwill skip
those.) The definition i s made up of several capabilities. Each capability describes one feature of
the terminal. A capability i s expressed in the form xx=valuo, where xx is a capability label and
value is the actual string that the emulator receives. For instance the up capability moves the cur-
sor up one line.Itsvalue i s the sequence: escape, “[”,“A”. These sequences are not interpreted at
allby Tcl so they may look peculiar. The complicated -looking sequence (cm) performs absolute
cursor motion. The row and column are substituted for each %dbefore it i s transmitted. The char-
acter string “\E” i s replaced with a true ASCII ESC (escape) character. The remaining capabilities
are nondestructive space (nd), clear screen (el), down one line (a),begin standout mode (so)
and end standout mode (sa). The actual definitions are based on the A N S I terminal definition
[ANSIgO]. Th i s i s a purely arbitrary choice.

6

set env(TERW) "tk"
set env(TERMCAP) { t k r

:cm=\E[%d;%dBr
:up=\E[A:
:nd=\E[C:
:cl=\E [H\E [J:
:do=AJ:
:ao=\E[7m:
:sa=\$ [m:

se t env(TEXMINF0) /tmp
set t t e r c "/tmp/tk.erc n

set f i l e [open Stksrc w l

puts $ f i l e {tk,
CUp=\E [%pl%d;%p2%dB,
cuul=\E [A,
cuf l= \E [C,
clear=\$ tH\E [a,
id - \a,
cr=\r,
smso=\E [7m,
rmo= \E [m,

1
close $ f i l e
catch (exec t i c Stkerc)
exec r m Stkarc

For simplicity in this paper, the emulator only understands the generic standout mode rather than
specific ones such as underlining and highlighting. The tonm-mtmdout global variable describes
whether characters are being written in standout mode. Text in standout mode i s tagged with the
tag standout, here defined by white characters on ablack background.

set term-standout 0

$ t e r n tag contiguro 8tandout \
-background black \
-foreground whito

The text widget maintains the terminal display internally. I t can be read or written in a few differ-
ent ways. Access i s possible by character, by line, or by the entire screen. Lines are newline
delimited. It i s convenient toinitialize the entire screen (i.e., each line) with blanks. Later, this
will allow characters to be inserted anywhere without worrying if the line i s long enough already.
In the term-init procedure (below), the " inaer t $i.0" operation adds a line of blanks to rowi
beginning at column 0.

proc term-init {I{
set blanklino [format %*a $eo18 ""I\n
f o r {sot i1) {$i<= $roar.){ i nc r i){

7

$term inse r t Si.0 $blankline
1

For historical reasons, the first row in a text widget is 1 while the first column i s 0. The variables
cur-row and cur-col describe where characters are next written. Here, they are initialized to the
upper-left corner.

lret cur-row 1
set cur-col 0

The visible insertion cursor i s maintained as a mark. I t generally tracks the insertion point. Here,
the cursor i s also set to the upper-left corner.

$term mark #et i nse r t $cur-row.$cur -col
1

Once defined, the term-init procedure i s called immediately to initialize the text widget.

tem-init

A few more utility routines are useful. The ter~n-clea+procedure clears the screen by throwing
away the contents of the text widget and reinitializing it.

proc tonu-clear C 1 {

global term

$term daleto 1.0 end
tarm- init

1

The tem-down procedure moves the cursor down one line. If the cursor i s already at the end of
the screen, the text widget appears to scroll. This is accomplished by deleting the first line and
then creating a new one at the end.

proc term-down {I{
global cur-row rows cola term

if {$cur-row< $rows) {

1 else {

incr cur-row

already a t larrt line o f term, so 8crol l screen UP
$term delete 1.0 "l.end + 1 chars "

recreate line a t end
$term inner t end [format %*s Scols ""I\n

There i s no correspondingly complex routine to scroll up because the termcap/tenninfo libraries
never request it. Instead, they simulate it with other capabilities. In fact, the termcap/terminfo
libraries never request that the cursor scroll past the bottom line either. However, non-character -

8

graphic programs such as cat and 1s do, so the terminal emulator understands how to handle this
case.

The term- inaert procedure writes a string to the current location on the screen. It i s broken into
three parts. The first part writes from anywhere on a line up to the end. If the string is long
enough and wraps over several lines, the next section writes the full lines that wrap. Finally, the
last section handles the last characters that do not make a full line. Characters are tagged with the
standout tag if the emulator i s in standout mode.

Each one of these sections does its work by first deleting the existing characters and then inserting
the new characters. This i s a good example of where termcap/terminfo fail to have the ability to
adequately describe a terminal. The text widget i s essentially always in "insert" mode but term-
cap/terminfo have no way of describing this.

One capability of which the script does not take advantage, is that termcap/terminfo can be told
not to write across line boundaries. On that basis, this procedure could be simplified by removing
the second and third parts. Again however, programs such as cat and 1s expect to be able to write
over line boundaries. The terrminoert procedure does not worry about scrolling once the bot-
tom of the screen i s reached. tern--takes care of that already.

proc terzn-insert (81 {
global C O l 8 cur-col cur-row
global te m term_#tandout

e t char#-ran-to-writ. [string length $81
sot apace-ran-on-line Cexpr $cols - $cur-coll

if{$term-standoutl {

l ela. c

1

set tag-action "add"

set tag-action "r:OmOYm n

##################
wr i t e f i r s t l i n e
##################

if {$chars -r.m,to-write > $spacm-rem_on-linml {
#et chars-to-write $apace-rem-on-line
set newline 1

set chars-to-write $chers-rern-to-writo
aet newline 0

1 01s. {

1

$term dele te $cur-raw.$cur -col \

$term inse r t $cur-row.$cur -col [

I

$cur-row.[expr $cur-col + $chara - to-writel

string range $a 0 [expr $spacm-rem_on-linm-ll

9

$term tag Stag-action standout $cur-row.$cur -col \
$cur-rm.Cexpr $cur-col + $charm-to-write]

diacard f i r a t l i n e already w r i t t e n
i n c r char6-r.lm-to-write -$char8 _to_write
set 6 [string range $8 $char#-to-write end]

update cur-col
i nc r cur-col $char.-to-mite
update cur-row
if $newline (

1
term-down

##################
w r i t e full line.
##################
wh i le {$char8-ram-to-write >- Scol8) {

$term de1.t. $cur-rm.0 $cur-row.end
$term inmrrt $cur-rm.0 [string range $8 0 [e w r $ c o l ~ - l l l
$term tag $tag-action 8tandout $cur-rm.0 $cur-row.end

diacard line from b u f f e r
met 8 [string range $8 $co18 end1
incr char8-rem-to-write -$co18

e e t cur- col 0
term-down

1

#################
wr i te lamt l i n e
#################

if ($char8-ram-to-write) (
$term delete $ c u r - r m . O $cur _rorr.$char8 -r.m-to-~ite
$term insert $ c u r - r w . O $8

$term tag $tag-action 8tandout $Cur- rOW.O \

set cur-col $char8-ram-to-write
$cur-row.Qchar8 -r.m-to_rrrite

1

term-char8-changed

At the very end of term-insert i s a call to term-chara-changd This is a user-defined proce-
dure called whenever visible characters have changed. For example, the following code finds
when the string f00 appears on line 4:

proc term-char8-changed (1 (
global $term
if{[string match *foe* [$term get 4.0 4.andll1 . . .

1

10

Some other tests suitable for the body of tena-chars-changed are:

est if character a t row 4 c o l 5 i s in standout modo
if {-1I- [lsearch [$term tag names 4.53 standout31 ...

Information can also be retrieved:

Return contonta o f acroon
$term get 1.0 end

Return indicoa o f f i r a t string on l i noa 4 t o 6 that are
in standout mod.
$term tag nextrango standout 4.0 6.end

And here is possible code to modify the text on the screen:

Replace all occurrences of "foO" w i t h "bara on screen
f o r {set i1) {$i<=$rows) { incr i){

regsub -all"foOn [Storm got Si.0 $i.dl" b a r n x
Storm delo to Si.0 $i.ond
$term inse r t Si.0 $x

The last utility procedure i s tena-update -cursor. It is called to update the visible cursor.

proc term-update-cursor {I{
global cur-row cur-col t o m

$term mark sot insor t $cur-row.$cur -col

3
term-curaor-changod

The term-update -curaor procedure also calls a user-defined procedure, tom-cursor-changed.
A possible definition might be to test if the cursor i s at some specific location:

proc term-cursor-changod {I{

1
if {$cur-row -= 1 && $cur-col == 01 ...

By default, both procedures do nothing:

proc tom-curaor-changod (1 (1
proc term-chars-changed {I(1

term-exit i s another user-defined procedure. tenu- exit i s called when the spawned process
exits. Here i s a definition that causes the script itself to exit when the process does.

proc form- exit (1 {

11

e x i t
1

The last user-defined procedure i s term-boll. term-boll is executed when the terminal emulator
needs i tsbellrung. The following definition sends an ASCIIbellcharacter to the standard output.

proc tern - bell (1 €
send-user " \a"

1

Once all of the utility procedures are defined, the command to read the sequences i s straightfor -
ward. For instance, a backspace character causes the current column to be decremented. A car-
riage-return sets the current column to 0.

Notice how simple the code is for absolute cursor motion. It i s basically two assignment state-
ments. Because it is so simple, there i s no need to supply termcap/terminfo with information on
relative cursor motion commands. They cannot be substantially faster.l

expect-background {
-i$term-apaPm _id
- re " * \ [*\xOl - \xlfI+" C

Text
torm- inmrt $eacpoct -out(O,string)
term-updato-cur8or

(ct,) Qo t o beginning of l i n o
set cur-col 0
tarn-update-cursor

(ind,do) Move curllor down on0 lino
term-down
term-update-cutsor

Backnpaco nondontructivoly
incr cur-col -1
tarrP_updato-cursor

tom- bol l

1 mA\rmE

3 I*\n r C

3 "A\bn I

3 "*\an C

1 eof c

1 " * \033 \ \ \ tA " C
term-oxit

(cuu1,up) Movo curmor UP on. lino
incr cur-row -1
tern-updato-curaor

1 " * \033 \ \ \ tC " C
(cuf1,nd) Nondostructivo spaco
incr cur-col
term-update-cursor

1 -IO " * \ 0 3 3 \ \ \ [(\ t0-91*); (\ IO - 9 l*)H " C

1.The definition for nondestructive s p a mightbe seen as a concession to speed, but in fact i t i s required by some buggy versions of termcap which
operate incorrectly if the capability not defined. The other relative motion capabilities an assumed by the terminal driver for non-character -graphic
tools such as cat and1..

12

Y (cup,~nr) Move t o row y c o l x
sat cur-row [expr $errpect~out(l,string)+ll
met cur-col $expect -out(Z,atring)
term-update-cursor

I " " \033\ \ \ IE\033\\\ [J"
(clear,cl) Clear screen
term-clear
term-update-cur8or

(BPDEIO,PO) Begin standout mode
set term-standout 1

I " *\033\ \ \ [7m n {

1 n A\033\ \ \ [m n {
(m 0 , S O) End 8tandoUt mod0

set tonu-standout 0

I

Finally, some bindings are provided. Bindings define how the emulator should handle user events
such as user keystrokes and mouse motion. For example, the following statement defines a bind-
ing that applies to any keypress event. Upon Occurrence of such an event, its action sends the cor-
responding ASCII character to the process. Keypress events that do have an associated ASCII
character (such as "shift" and "control") are discarded.

The meta key i s simulated by sending an ASCII escape. Most programs understand this conven-
tion, and i t i s convenient because i t works over te lne t links.

I
I

These bindings are the same for any terminal and thus are not defined by explicit capabilities.
Bindings that are unusual do require capabilities. For example, some terminals have function
keys which generate a string of characters, typically unique to a particular brand of terminal. This
behavior i s described using a capability. For instance, the capability for function key 1 to send
escape, "O', and "P" could be described in either of two ways:

:kl- \EOP:

:kfl=\EOPr

tenncap -style
tenninfo -style

The matching binding is:

bind $term cF1> {e--send -i$torm_8pawn_id " \0330P*I

13

Using The Terminal Emulator For Testing And Automation

It i s possible to use the terminal emulator defined in the previous section to partially or fully auto-
mate or test character -graphic applications.

For instance, each expect -like operation could be a loop that repeatedly performs various tests of
interest on the text widget contents. In the following code, the entrance to the loop i s protected by
"tkwaitvar tee tga ts " . This blocks the loop from proceeding until the t e 8 t g a t 8 variable i s
changed. The variable is changed by the tom-charm-changodprocedure, invoked whenever the
screen changes. Using this idea, the following code waits for a % prompt anywhere on the first
line:

w h i l e 1 (
if { ~ S t e s t g a t s l Ctkwait vat t e s t g a t 8 1
set t e s t g a t s 0
if ([regexp "%" [$ t o m got 1.0 1.dIl)broak

Writing a substantial script this way would be clumsy. Furthermore, i t prevents the use of control
flow commands in the actions. One solution i s to create a procedure that doesallof the work han-
dling the semaphore and hiding the while loop.

In [LibesgO], a script i s presented which partially automates the game of rogue, an adventure
game. Because the game uses character graphics, the script can conceivably miss the patterns for
which it i s looking.

Using the techniques illustrated in this paper, i t i s possible to write a replacement script for rogue
that fully understands the character graphics. The script i s based on a procedure (shown later)
called tern-expect. This new script i s similar to the earlier version except that instead of pat-
terns, tests are composed of explicit statements. Any nonzero result causes tenr-expect to be
satisfied whereupon it executes the associated action. For instance, the first test looks for % in
either the first or second line on the screen. The meaning of the rest of the script should be obvi-
ous.

whi lo 1 {
term-expect (regern "%" [Storm got 1.0 2.endl)
em-send " roguo\r R

term_.xp.ct \
{regoxp " S t r r 18" [S t o m got 24.0 24.ondl) (

1 {regexp " S t r : 16" [Storm get 24.0 24.ondll
exp-Bend "Qn

term-expect (reg- "quit"[$ t o m get 1.0 l.endl1
exp-mnd "yn

break

14

In contrast to the original rogue script, there i s no interact command at the end of this one.
Because of the bindings, the script i s always listening to the keyboard! If desired, this implicit
interaction can be desabled by removing or overriding the ~ e y ~ r e e mbindings that appear at the
end of the terminal emulator.

Since the tests can be arbitrarily large lists of statements, they are grouped with braces. For exam-
ple:

term-expect C
se t line [$term get 1.0 2.endl
regexp $line

IC
action

} timeout C

1
put8 " timed O u t 1 n

Timeouts follow a simi lar syntax as before. A test for an eof i s not provided since a terminal emu-
lator should not exit just because the applications making use of it do so. In this example, a shell
prompt i s used to detect when the rogue program has exited.

The tem-axpect procedure lacks some of the niceties of expect and should be viewed as a
framework for designing a built-in command.

The term-expect Procedure

An implementation of term-axpect i s shown in this section. The code assumes the presence of
the terminal emulator shown in the previous section. Although the terminal emulator i s necessary,
the text widget and, indeed, Tk itself can be obviated by maintaining an explicit representation
such as a list of strings representing rows of the terminal. However, even with Tk and the terminal
emulator, the timeout and the scope handling makes the code intricate. Without them, the code
would be more similar to the fragment on page 14.

Timeouts are implemented using an a f t e r command which sets a strobe at the end of the timeout
period. In order to avoid an old a f t e r command setting the strobe for a later tem-expect com-
mand, a new strobe variable i s generated each time.* A global variable provides a unique identi-
fier for this purpose and i s initialized separately:

se t tom- counter 0 ;# d ie t i ngu ieh different t imers

The procedure begins by deciding the amount of time to wait before timing out. Alocaltimeout i s
used if defined, otherwise the global timeout i s used. If no global timeout i s defined, 10 seconds
is used. This behavior i s exactly that of the real expect command.

proc term-expect Cargel C
upvar timeout l oca l - thou t
upvar #O timoout global-timeout

1.Tk 4 promises to provide support for cancelling af tar commands. This would remove the need for separate strobe variables.

15

aet timeout 10
catch {sot t h o o u t SglobaLtiPP.out1
catch {set t h e o u t $localfixnoout1

Two unique global variables are used as strobes-to indicate that an event (data or timeout) has
occurred. The atroba variable holds the name of a global variable changed when the terminal
changes or the code has timed out. Later, the code wi l l wait for this variable to change. To distin-
guish between the two types of events, tat robe is another strobe changed only upon timeout. (It
i s possible to use a single tri-valued strobe, but the coding i s much trickier.)

global tom- counter
incr term-countor
global [set strobo -data- laot torm_countorl1
global [ae t tstrobo - timor - [sot term-countor] 1

The tern-char6-changed procedure i s modified to fire the strobe. Note the use of double quotes
around the body of term-chara-changed in order to allow substitution of the strobe command in
this scope.

proc term-chars-changod (1 nuplovol #O aot $strob. 1"

The next lines set the strobes to make sure that the screen image can be tested immediately since
the screen could initially be in the expected state. The a f t o r command arranges for the timer
strobe to be set later.

#et $strobe 1
#et Ststrob. 0

;# forco an initial t o a t
;# no timeout yet

if {Stheout .- 01 {
aet matimeout [expr 1000*$timooutl
a f t e r $mcrtimeout "sot $atrob. 1; aot Ststrob. 1.
set timoout -act {1

1

If the user omits the final action, the number of arguments will be uneven. Later code i s simplified
by adding an empty action in this case.

met ugc 111.agth $argsl
if {$argc%2 =- 11 {

lappond args {I
i n c r argc

1

If the test i s the bare string'"tiauout", i ts action i s saved for later. Both the string and the action
are removed from the l i s t of tests.

f o r {sot i 01 {$i<$argc} {incr i 21 {
set act-indox texpr $i+lI
if{I[atring compare timeout [linduc Sargs $ i l l 1 {

set theout - act [lindex $arga $act-indoxl
sot args [l replaco $args iact-indexl

16

i nc r argc -2
break

1

Now the procedure loops, waiting for the screen to be changed. A test first checks if the strobe has
already occurred. If not, tkwait waits. This suspends the loop when no screen activity i s occur-
ring. Once the strobe occurs, the rest of the loop executes. If the timeout has occurred or any of
the tests are true, the loop breaks so that the action can be evaluated.

whi le {ICinfo o x i o t o act]) {
if {I[pet Sotrob01 1 {

1
oe t $mtrobo 0

tkwait var $strobe

if{[se t Stetrobel) {

1 elem {
set act $timr.out -act

f o r {set i 0) {$i<$argc) {incr i 2) {
if([uplevel [lindex $argo $ill){

ae t act [l index Sargs [incr ill
break

1

To keep the environment clean, the global strobe variables are deleted. If a timeout could occur in
the future, the =set i s similarly scheduled; otherwise the variables are deleted immediately. The
term-chars-changed procedure is reset so that i t does not continue setting the data strobe.

proc tern-charo-changed {I{I

if {$timeout >- 0) {

1 e lse {

1

a f to r $raotiouout unoot $strob. Stetrobe

unset Sotrobe Ststrobo

Finally, the action i s evaluated. If a flow control command (such as break) was executed, i t i s
returned in such a way that the caller sees it as well.

se t code [catch {uplevel $act) str ing1
if {$code > 4) {return -code $code $string)
if {$coda -= 4) { ro tu rn -code continue)
if {$code -- 3) Croturn -cod. break)
if {$code =- 2) { re tu rn -code return)
if {$codeI- 1) { re tu rn -cod. arror \

- error info SerrorInfo \
-errorcode $errorcode Sat r ing)

r e t u r n Set r ing

d

17

1

Another Example -Querying a Database

The following example connects to the Cornell University Library and makes anumber of queries
through its menu system. Interestingly, this library expects to drive a 3270 terminal. A 3270 ter-
minal i s not like a typical serial terminal and traditional programs such as t e l n e t and rlogin do
not support it. Thus, Expect uses the tn3270 program to convert the 3270 interaction to a Curses-
style character stream which can then be handled as usual.

First, the shell prompt i s waited for and the 3270 emulator i s started.

term-expect {regamp {.*[>%I1 [Storm got 1.0 3.ondl1
exp-nand " tn3270 n o t i 8 . l i b r a r y . c o ~ o l l . o d u \ r ~

The next step i s to get through the library's login interaction.

term-expect {reg- "desk" [$term got 19.0 19.andl1 {
exp-#end "\r8

1

Once in the library system, all the menus prompt the same way. Two utility routines are used to
handle this repetitive situation.

proc waitfornext (1 {
global cur-row cur-col t o m
term-expect {oxpr {$cur-c01==15 && \

Scu r - ra r r -- 24 && \
COMMAND: . -- [Storm got 24.0 94.161)) {I

Now the interactions with the library are trivial. The remaining commands look for a book using
the keywords sound and Scottish. The first book i s selected and its long form i s displayed. Finally
the next page of the long form i s shown.

WaitfO M O X t

sendcomaand n k - 8 ~ dand 8COttiah\r "

waitfornoxt
eendcoarmand "l\r"
waitf ornext
sendcomaand "lon\r "
wai t fornext
sendcommand " for \ r n

18

The view of the Tk terminal emulator, after these queries, i s shown below:

A Tk-less implementation

The implementation shown above uses Tk. The drawback to Tk i s that i t requires the X Window
System to be available. This might not be possible in some environments.

I t i s possible to perform terminal emulation and the expect operations without using Tk. The
framework remains the same. The significant changes are:

l An array is used to maintain the screen representation instead of using a Tk text widget.
Each line of the array models a line of the display. The functionality provided by the text
widget object i s similarly duplicated in an explicit Tcl procedure.

l The input stream i s analyzed synchronously instead of asynchronously. In practical terms,
this means that urpect -beforo i s used instead of eqpoct-background to wait for charac-
ter sequences. This simplifies the t e r n - m e e t procedure. The strobes are no longer nec-
essary since the waiting i s explicit.

Availability

This software described in this paper i s freely available. However, the author and NIST would
appreciate credit if this software, documentation, ideas, or portions of them are used.

The scripts and programs described in this document may be ftp’d as pub/expect/expect.tar.Z
from ftp.cme.nist.gov. The software will be mailed to you if you send the mail message “send
pub/expect/expect.tar.Z’ (without quotes) to library @cme.nist.gov.

Acknowledgments

Much of the development of Expect was funded by the NIST Scientific and Technical Research
Services.

19

The Tk-less implementation described in this paper was done by Adrian Moriano, Cornell Uni-
versity. Adrian also wrote the script to interact with the Cornell University Library.

Thanks to Steve Ray, Josh Lubell, and Kathy Miles for proofreading th i s paper.

References

[ANSI901 ANSI X3.64-1979 (R1990) - Additional Controls for Use with the American Nation -
a l Standards Codefor Informution Interchange, ANSI, 1990.

[Good911 Berny Goodheart, UNZX Curses Explained, Prentice Hall, 1991.

[Lamb901 Linda Lamb, Learning the v i Editor, O’Reilly & Associates, Inc., ISBN 0-937175-
67-6, October 1990.

[LibesgO] Don Libes, “Expect: Curing Those Uncontrollable Fits of Interaction”, Proceedings
of the Summer 1990 USENIX Conference, pp. 183-192, Anaheim, CA, June 11-15,
1990.

ribes911 Don Libes, “Expect: Scripts for Controlling Interactive Programs”, Computing Sys-
tems, pp. 99-126, Vol. 4, No. 2, University of California Press Journals, CA, Spring
1991.

[Libes95] Don Libes, Exploring Expect: A Tcl-based Toolkit for Automating Interactive Pro-
grums, O’Reilly & Associates, Inc., pp. 602, ISBN 1-56592-090-2, January 1995.

[Ouster941 John K Ousterhout, Tcl and the 7k Toolkit, Addison-Wesley, ISBN 0-201-63337-X,
April 1994.

[POSIX941 Portable Operating System InterfQce (POSIX) - Part 2: Shell and Utilities, Federal
Information Processing Standards Publication 189, National Institute of Standards
and Technology, October 11,1994.

[Stall941 Richard Stallman, GNU Emacs Manual, Free Software Foundation, Inc., ISBN 1-
88211404 -3, July 1994.

20

